Organic Polyvalent Iodine Reagents-Promoted Coupling Reaction of 1-Alkynes

Jun Hua WANG, Xian HUANG*

Department of Chemistry, Zhejiang University(Campus Xixi), Hangzhou 310028

Abstract: Terminal alkynes couple smoothly in the presence of PhI(OAc)₂ or PhI(OH)OTs, catalytic CuI and base, affording conjugated diynes.

Keywords: Terminal alkynes, coupling, organic polyvalent iodine compounds, conjugated diynes.

Since the early 1980s interest in organic polyvalent iodine compounds has experienced a resurgence¹. A few examples of homo-coupling reactions *via* these compounds have been reported². We found that 1-alkynes were easy to couple in the presence of PhI(OAc)₂ or PhI(OH)OTs, catalytic CuI and base, to afford conjugated diynes. 1,3-Diyne plays an important role in studies of molecular recongnition³, in natural products⁴, and in synthesis. Although Eglinton reaction⁵, Cadiot-Chalkiewicz coupling⁵ and Glaser reaction⁵ have provided convenient methods to synthesize conjugated diynes, up to now, new approaches have been developing⁶. According to our knowledge, coupling of terminal alkynes *via* organic polyvalent iodine compounds has not been reported. Herein we would like to report our results.

Scheme 1

2 R
$$\longrightarrow$$
 H $\xrightarrow{\text{PhI}(\text{OAc})_2(0.5\text{eq.}), \text{ CuI}(\text{cat.})}$ R \longrightarrow R \longrightarrow R \longrightarrow R

We found that $PhI(OAc)_2$ and PhI(OH)OTs (Koser's reagent) can effectively promote the coupling of 1-alkynes under mild conditions to afford 1,3-diynes in the presence of NEt_3 or $NaHCO_3$, but the later reagent gave a little lower yields. The outcomes were summarized in **Table 1**. In order to get rid of the possible Glaser Reaction⁵, the reaction was proceeded under nitrogen atmosphere. The possible mechanism is probably similar to that proposed in some other cases of carbon-carbon bond formation via organic polyvalent iodine compounds^{2a}.

Scheme 2. The possible mechanism of coupling of 1-alkynes promoted by PhI(OAc)₂.

$$R \xrightarrow{\qquad} H \xrightarrow{Cul} R \xrightarrow{\qquad} Cul \xrightarrow{Phl(OAc)_2} \left[R \xrightarrow{\qquad} \begin{matrix} -Phl \\ Ph \end{matrix} \right]$$

polyvalent Productsa) Organic iodine reagents Isolated yields (%) PhI(OAc)₂ n-Bu PhI(OAc)₂ 78 MeOCH₂ PhI(OAc)₂ 82 Ph PhI(OH)OTs 73 PhI(OH)OTs 67 n-Bu MeOCH₂ PhI(OH)OTs 71 ——— CH₂OMe MeOCH₂-

Table 1. Coupling of terminal alkynes promoted by organic polyvalent iodine reagents.

We also studied the possibility of cross-coupling reaction of two different 1-alkynes *via* organic polyvalent iodine compounds. The products of cross-coupling were obtained indeed in about 50% yield, however, accompanied by minor homo-coupling products.

In a sense, the above coupling reactions show the similarities between organic polyvalent iodine compounds and transtion metal complexes in ligand exchange, reductive elimination.

Acknowledgments

Project 29772007 is supported by the National Natural Science Foundation of China.

References

- 1. Reviews: P. J. Stang, V. V. Zhdankin, Chem. Rev., 1996, 96, 1123.
- (a)R. M. Moriarty, R. K. Vaid, *Synthesis*, 1990, 431. (b)D. H. R. Barton, J. C. Jaszberenyi, K. Leβmann, T. Timar, *Tetrahedron*, 1992, 48, 8881.
- 3. C. W. Chen, H. W. Whitlock, J. Am. Chem. Soc., 1978, 100, 4921.
- a)M. D. Lewis, R. Menes, *Tetrahedron Lett.*, 1987, 28, 5129. b)J. A. Marco, J. F. Sanz, J. Jakupovic, S. Huneck, *Tetrahedron*, 1990, 46, 6931.
- J. March, "Advanced Organic Chemistry", 4th ed. John Wiley & Son, New York, 1992, p714 and references therein.
- 6. Recent literatures: a)J. Wityak, J. B. Chan, *Synth. Commun.*, **1991**, *21*, 977. b)Q. Liu, D. J. Burton, *Tetrahedron Lett.*, **1997**, *38*, 4371. c)Y. Nishihara, K. Ikegashira, A. Mori, T. Hiyama, *Tetreahedron Lett.*, **1998**, *39*, 4075.

Received 7 January 1999

a) All the products were characterized by NMR, MS and IR spectra and the spectroscopic data were identical with those reported previously.